Search for:
Making a custom Arduino Board

Good morning!

Note that this is best called Arduino-like board since a genuine Arduino-branded board is made by the Arduino company. We use the name Arduino board to make it easy to talk about, but a custom board as described below is technically not an Arduino board though will have the function.

Let’s suppose you’ve made your own Arduino-like device. That is, you’ve developed PCB and assembled the components onto the PCB–components such as the ATMEL MEGA328, the crystal, the resistors, capacitors, FTDI chip, headers, etc. Then how do you make your Arduino-like device programmable from the Arduino IDE like any other Arduino? Well, you need to load a bootloader onto this custom board of yours! The bootloader is responsbile for loading your future compiled sketches onto the board. Here are the steps:
What you need

  1. A regular Arduino i.e. one that already has the bootloader
  2. Your custom board
  3. Wires (male to female polarity)
  4. Computer for programming and powering the devices

Obtaining the Bootloader Code

  1. Arduino IDE: The Arduino IDE comes with the bootloader code for various Arduino boards. You can download the Arduino IDE or directly get the bootloader from the Arduino bootloaders page.
  2. Bootloader Files: Once you have installed the Arduino IDE, the bootloader files can be found in the Arduino hardware folder. Typically, the path is something like:bashCopy code{Arduino IDE installation directory}/hardware/arduino/avr/bootloaders Here, you will find folders corresponding to different boards, such as atmega for the ATmega328P used in Arduino Uno.

Installing the Bootloader

  1. Programmer Hardware: To burn the bootloader onto your custom Arduino board, you will need a programmer. Common options include:
    • Another Arduino board (acting as an ISP programmer)
    • USBasp
    • AVRISP mkII
  2. Connections: If you are using an Arduino as an ISP, connect it to your custom board as follows:Arduino as ISP PinCustom Arduino Pin

3. Burning the Bootloader:

  • Open the Arduino IDE.
  • Load the “ArduinoISP” sketch (File > Examples > 11.ArduinoISP > ArduinoISP) onto your Arduino board acting as the programmer.
  • Connect your programmer to your custom board as shown in step 2.
  • In the Arduino IDE, go to Tools > Board and select the appropriate board type for your custom Arduino (e.g., “Arduino Uno”).
  • Select the appropriate programmer from Tools > Programmer (e.g., “Arduino as ISP”).
  • Click on Tools > Burn Bootloader.

This process will burn the bootloader onto your custom Arduino board, making it ready to use with the Arduino IDE.

At KCHKNA we look forward to mass-producing Arduino-like boards starting in 2025. These will be available for sale across Africa & Asia so that many more people can easily start off their embedded programming journey. Stay tuned!

Go Green Campaign

We believe in working with the entire community so that we can together create a circular economy wherever we are; the ideas about circularity need to be learned and understood from an early age. Here are some pictures from some of our events where we worked with schools and other partners.

Series on “Serving Static Files using Nginx with the Django Framework”

Part 1: Installing Django using Anaconda & VS Code

Django a web framework with which one can develop an entire app, backend and front end inclusive. To install Django on your computer depends on how you want to use it. The recommended way would be to start with installing Visual Studio Code as the Integrated Development Environment. Then install an the Python Extension as shown below

screenshot of VS Code showing the Python Extension
Screenshot of VS Code showing the Python Extension

NOTE: You must already have Python installed on your system.

We prefer using Anaconda. Install that too.

What you should have installed by now:

  1. Visual Studio Code, and the Python Extension
  2. Python
  3. Anaconda

Next, run the Anaconda Navigator app

Screenshot of Anaconda Navigator showing the "base" environment which is created by default
Screenshot of Anaconda Navigator showing the “base” environment which is created by default

Then create a new virtual environment by clicking “Create”. Name the environment “djangoAppEnv”.

Once the environment is created choose that environment

Screenshot of Anaconda Navigator showing the "djangoAppEnv" environment
Screenshot of Anaconda Navigator showing the “djangoAppEnv” environment

Then in the search box on the top right, search for django and install the django packages shown below (except django-location-field, not needed at the moment). Make sure to click on “All” in the drop-down menu next to the “Channels” button; this allows you to search for all packages, namely those installed and those not yet installed.

Screenshot of Anaconda Navigator showing the search results for "django"
Screenshot of Anaconda Navigator showing the search results for “django”

Now open your VS Code application.

In VS Code go ahead and launch a new terminal session; in the menu bar click on “Terminal” then click on “New Terminal”. In that new terminal type

conda activate djangoAppEnv
Screenshot of VS Code showing a terminal with "djangoAppEnv" virtual environment activated
Screenshot of VS Code showing a terminal with “djangoAppEnv” virtual environment activated

If successful the beginning of the prompt line will change from (base) to (djangoAppEnv).

You are ready to develop within the virtual environment. We’ll go into more details but for now you can install other python packages that you may need for your specific application. For example install tensorflow for Machine Learning things. To do so you’ll type in the terminal

conda install -c conda-forge tensorflow

This installs Tensorflow into your virtual environment (djangoAppEnv). Note that you also could do this using the Anaconda Navigator application by searching for “tensorflow”.

Join Our Team

Position: Administrative Officer

Location: Mzuzu

KCHKNA Inc. is a renewable energy and technology company that develops innovative solutions for creating smart, highly functional and tech-enabled human settlements. One of KCHKNA’s current initiatives is largescale energy recycling whereby a city’s waste pipeline is managed to extract value from it, such as generating electricity from the waste. Join us in creating clean, fun, and liveable places!

Position: Administrative Officer

Reports to: Chief Executive Officer

Your purpose at KCHKNA

To assist in the effective execution of the company’s projects.

Expected Contributions from You

a. Maintain company calendar schedule and appointment

b. Answer queries by employees and clients

c. Prepare regular reports on expenses and office budget

d. Distribute and store correspondence

e. Schedule in-house and external events

f. Analyse historical and current client data to recognise trends and patterns

g. Check that regulatory and ethical guidelines are followed when handling client data

h. Develop action plans for the company

i. Liaise with organisation’s vendors and partners

j. Organize meetings logistics including travel arrangements, visas, permits for company employees

k. Maintenance of Customer Relationship Management (CRM) platform.

Your Profile

a. Swift in getting things done.

b. Good grasp of how technology can be an enabler for people

c. Effective negotiation skills

d. Diploma in any commerce field or social science related field.

Apply Now

For more roles see here

Let’s Collect Your Waste!

We currently collect waste in Malawi in the following places.

CityArea/WardPostcode
MzuzuMzuzu CBD105200
Khorongo105201
Lupaso105202
Luwinga105203
Mchengautuba105204
Chibanja105205
Katoto105206
Zolozolo105207
Hilltop105208
Chiputula105209
Mzilawaingwe105210
Katawa105211
Chasefu105212
Lunyangwa105213
Kaning’ina105214
Masasa105215
Msongwe105216

So whether you have a factory, a medical institution, an office or a home, we are ready to provide you a consistent and reliable waste collection service that you subscribe to. We can also do one-off disposals. Please contact us via WhatsApp through +265881794148

KCHKNA DNA: Our Philosophy, Our Culture!

Published in honor of World DNA day

What is a code?

To code means to represent information using symbols that we had agreed to earlier. For example, we could agree that when I raise my right hand it means “I am very, very happy” and if I clap twice it means “I am going to the market”. The two symbols are “raising my right hand” and “clapping twice”. Some of the reasons for using a code are: to simplify communication and to allow communication across large distances or across time. There are many codes in existence today. One famous one is the Morse Code which uses two symbols—represented visually by dashes and dots, or aurally by a long duration tone (equivalent to dash) and short duration tone (equivalent dot). An agreed-upon combination of these symbols is used to represent letters of the alphabet and the ten numerals of the (e.g. Arabic) numeral system (The numerals, 0,1,2, etc. are in fact also symbols that represent/encode the abstract mathematical objects called number—e.g. 1 represents the number 1.) These two Morse Code—dash and dot—symbols can then be used to encode any message we desire. To encode the word “KCHKNA” for example, we would use:

 KCHKNA
In Morse Codedash dot dashdash dot dash dotdot dot dot dotdash dot dashdash dotdot dash

Tip: On Android phones you can input characters using Morse Code. With the Google Virtual Keyboard, do so by going to “Languages”, choosing “English” and then scrolling to the right until you find the “Morse code” option

Human language is also a kind of code. We use an agreed-upon set of sounds to encode information. And while there are many human languages, there is ONE language that we all speak: the genetic code.

What is DNA?

Cells have to communicate with other cells and within themselves, too! For humans we use the code of language to, for example, issue an instruction such as “Stand up”. The listener understands because she knows the code. Likewise, the cell needs to talk using a language. The cell is continuously using a cryptic language to issue instructions about what proteins to produce in the body; these proteins can then be used for intracellular or intercellular communication, to build some structures in the body, or effect a change in a distant organ in the body.

 Proteins in the human body are made by chemically chaining together several amino acids (these are organic molecules). The human body uses about 22 amino acids to build its many proteins. 9 amino acids are called ‘essential’ because the body is not able to synthesize them by itself: so, it is essential that we ingest them. Often we do not directly consume amino acids; instead we consume proteins which the body then breaks down into its constituent amino acids.

Now, when all the amino acids are there, the cell needs to synthesize a specific protein. How does it tell the protein-making machinery (a key component being ribosome) to make a specific protein? The cell uses the genetic code to refer to specific amino acids.

Deoxyribonucleic acid (DNA) molecules are strung together in such a manner that they encode information. Just as we can code for a letter of the alphabet by arranging dashes and dots in one way (for Morse code), when DNA molecules are arranged in a specific way they can code for an amino acid. Instead of using just two symbols such as the dash and dot in Morse code, the genetic code consists of 4 symbols, referred to by their letters A, T, C, and G. Each amino acid is encoded by three of the four symbols. For example, the amino acid tryptophan is encoded by TGG.  There are other protein complexes in the cell that “understand” this language; they translate and execute the instruction. A region of DNA that codes for some protein or other functional unit (rather than just an amino acid) is generally called a gene, hence the term genetic code.

So while we may differ in the human languages we use, we all speak this one language called the genetic code!

Philosophy, culture and DNA

Any social grouping has what can be thought of as its DNA. This is the set of symbols used to communicate, the set of protocols and principles to be adhered to as well as the total sum of their knowledge, experiences, and wisdom. This is called the group’s philosophy. This philosophy then determines the group’s culture—that is what individual members or social functional units actually do (or not do).

Without prior agreements as to how to interpret symbols it is not possible to communicate and function as a unit. The cell issues instructions using the genetic code because of prior agreements as to how to interpret the symbols. Likewise, as a social unit (company) we must have a consensus as to what means what, what manner to behave, what rules of thumb to follow and more generally how to treat one another. Our emphasis on promoting a specific kind of culture does not imply this is the best culture or way of doing things. Not at all! (In fact, there is hardly any proof that one language is superior to another—it just happens that some languages manage to establish a stronger brand than others.) However, the important bit is to agree that this is how things would go. In other words, once we have agreed that our language  (and culture in general) consists of these symbols, those protocols and rules, everyone must acquiesce or else no (clear) communication or functional collaboration will happen.

What are some of our beliefs?

  1. You are not that important—at KCHKNA we believe in the power of not the individual but in how well they are connected to the rest of the team. We look at our organization as an organ or a system. Individual components make the system but the system itself is an emergent being that cannot be understood or fully appreciated by studying the individuals. What this means is that no matter how intelligent, how hardworking, how visionary one individual is is not the most important thing. Think perhaps of a heart cell. No one single heart cell has the ability to pump blood. And yet, together with all the others that make up the heart, these cells can now pump blood. We are organ, too. We function as a unit.
  2. You are that important—it is true that an individual heart cell cannot pump blood. However, it is equally true that without that individual heart cell, the heart is no longer the same. So an individual cell is indeed very important! Even more importantly, a collection of neuron cells will not pump blood. In other words while the connectedness is very  important, the type of individuals who are connected is of equal importance. Practically speaking this means that we do care about your individual quirks, dreams, and style. You are an invaluable part of this organ(isation)!
  3. Come for the people, work to pass time. Imagine you are with your best friend or another person whom you love spending time with. You can spend forever with this person just sitting side by side. But instead of just sitting around you decide to be doing something together—you decide to build a company, to advance your community, to bring love and positivity to the people who are around you. You do this not because you need to, but because you love being with the other person. This is not just metaphorical: it is what we strive to have our people experience. A large chunk of life is spent working so it doesn’t make sense that a large chunk of your life would be spent with people whom you don’t enjoy being with.
  4. Experiment. Experiment. Experiment. We are seekers of truth (the definition of which we agree on as a team) and in doing so we are willing to reexamine and adjust our worldview when presented with new data. We perform experiments as frequently as possible because we know there is more to discover, better things to come, better ways of doing things.

As a side note, communication devices that we use have one or many underlying protocols. When you buy a Wi-Fi capable device for example, this means that it has a microcontroller and other circuitry that implement the Wi-Fi protocol. The web clients we use to access the World Wide Web use the hypertext transfer protocol to talk to servers. When you have a USB device, it means that that device implements and thus understands the Universal Serial Bus protocol. The examples are too many to list! What is key to understand is that device manufacturers need to have first agreed on how to interpret the symbols in order for effective functioning of their devices to happen.

Philosophy and Technology

Human civilization has significantly advanced with innovations spanning a vast spectrum of industries. Researchers as well as entrepreneurs have created a world that was perhaps far from imaginable in the 20th century. From the way we live, travel and communicate to how we conduct business, what money is or means, a lot has changed—at least in some places! We should expect more changes because the world is still evolving and people all over the globe are still making innumerable discoveries. But underlying all this is a philosophy as to how humanity ought to evolve, what knowledge is worth seeking, what applications are worth developing, and so on.

A company’s philosophy is like its DNA. Alexander Leivesley pointed out in Huffington Post that, “Philosophy is not obsolete. Philosophy brings the important questions to the table and works towards an answer. It encourages us to think critically about the world.” The reason why a business exists is due to its DNA. This DNA is made up of the philosophy that underpins the actions of individuals. In other words, the culture is the outcome, a measurable property of a social grouping. The philosophy defines the culture and then the culture is manifested in the everyday actions and outcomes of the social group.

We strive to create a culture where people are genuinely and practically there for each other, but we cannot force people to behave in a specific way. We aim to create an environment where people can be caring, and yet give each individual the freedom for the specific actions they take to exhibit that care.

Our Goal at KCHKNA Inc.

 As KCHKNA, we are thus guided by a certain philosophy that is core to our existence. Unfortunately, as you may have noted from this note, a culture or philosophy is not something one can define in one line, or point at the same way we can point at our shiny office complex. We can share examples, but even they fall short. For example, we see the human as the greatest capital. Given the right tools and resources, she can achieve the extraordinary. We take inspiration from Jeff Bezos when he says, “Failure and invention are inseparable twins. To invent you have to experiment, and if you know in advance that it’s going to work, it’s not an experiment.” Thus we gloat neither over our failures nor our successes; but we dissect and learn from both experiences.  And while failure and invention are indeed inseparable twins, we never venture into something haphazardly in the hope of learning lessons from the failure; no, we do our utmost to plan and derisk our endeavors and maximize the probability for phenomenal success. And yet these examples never fully represent our philosophy, our DNA. Ultimately, you would have to come and join us to know and experience our core philosophy!

Happy World DNA day!

20+ GW for Malawi
WHY WE NEED MORE THAN 20,000 MW IN MALAWI

Electricity is an indisputable enabler for any modern society. Hardly any other technology has had as much an influence as electricity. And yet, two-thirds of Africans still don’t have access to affordable, reliable, sustainable and modern electricity. This energy deficit continues to stifle economic growth, job creation, agricultural transformation as well as improvements in health and education. The deficit essentially stifles human potential, a sad reality for Africa But it is equally sad for the world as it means Africa is not able to contribute anywhere close to its potential.

The energy crisis has for a long, long time been a huge problem to Sub-Saharan Africa; this energy poverty presents a bottleneck for solving most of the other problems across the region. Despite long standing efforts to address the energy poverty, in 2014 633 million people lacked access to electricity and 792 million people relied on traditional biomass as their energy source for cooking (IEA, 2016). This lack of electricity has resulted in limited opportunities for entrepreneurs and corporations alike as well as premature deaths due to respiratory diseases caused by or exacerbated by cooking using outdated means.

Malawi being one of the countries in Sub-Saharan Africa is heavily hit by the deficit of electricity. With an estimated population of 18 million people as of 2020, less than 15 percent of the population have access to electricity. Those 15 percent often get electricity for less than half a day.  The Malawi power generation capacity is under 500 MW–too little to be of much use beyond lighting. No serious investor, local or foreign, would have the desire to invest in large scale projects with such a lack of energy.

But how much energy does Malawi need? Others have estimated that Malawi will need 2.5 billion dollars by 2030 in order to achieve an electrification rate of 30 percent. The goal is to have 1,200 MW by 2030.

Source: https://rmi.org/wp-content/uploads/2018/10/RMI_SEED_Demand_Stimulation_2018.pdf

We believe differently. Malawi needs more than 20,000 MW of power. The country has the capacity for more than 20,000 MW with the available resources. Producing 20,000 MW would require different means including wind, solar, hydro as well as biomass—but it can all be clean.

We believe so because we believe in the potential of the country and its people. Most other predictions for how much Malawi needs have an underlying assumption: that, for example in 2030, Malawi will still be one of the poorest nations on the planet. That is why well-meaning organizations create models that predict that Malawi needs such low levels of electricity as 1200, 2000 MW or something like it. But consider that Malawians are humans like those in Singapore or the USA. They too want air conditioning, 24/7 electricity, electric trains, advanced and futuristic airports, hospitals in which people don’t die due to power cuts, and data centers, to name a few. We know that this set of technologies can only be possible if there is over 20, 000 MW.

But why not do small projects, at least to help these poor people? For those outside Malawi a change from traditional fires for lighting to an electric bulb seems like a good thing. But for the average Malawian in a rural area, who initially did not have an electricity bill, the arrival of a little bit of electricity is in fact a new liability. They didn’t have to pay for lighting before, now they have to. But more electricity can allow that individual to open a welding business–or well, why not, an electric car plant. With this business that individual is able to pay for the electricity. Similarly at a national level small projects are a liability that will be hard to settle—it is too little to activate the economy and thus less an enabler and more a burden.

We reiterate that a little bit of electricity is a liability for the country. A lot of electricity is what will truly change things. We know, looking at other nations, that 18 million people need far, far more than a 1000 MW or, really anything below 20 thousand. Yes, Malawi is different–it is poor, we heard that. But what would need to change? Do we wait until there is a lot of demand from factories and then build the power plants for the factories? But who in the first place would build a factory if there is no reliable electricity! Indeed the idea has been one of building small projects and hoping the factories will follow; this has been experimented with for a long time already. There have been small projects all the way back to the establishment of the Republic in the 1960s. Small projects funded by benefactors over the last 50 plus years has resulted in less than 400 MW of capacity; that is HALF a century to reach a capacity that other nations build in weeks. So, no, small projects haven’t worked; they will not work in the next 50 years.

Yet, we do not instead wish for a haphazard building of power plants. The point is we need to build, a lot and bigger. A coordinated effort is required so that there isn’t an oversupply; but even if there were an oversupply of electricity in Malawi, it would simply be a new export to the neighbours. So what is needed now is large, financially sound projects. At KCHKNA we would like to be involved in this next chapter of the country!

Electricity is truly magical. It is one of mankind’s greatest inventions, by far. Even computers, themselves one other great invention, can only do what they do thanks to electricity. A society without electricity can have the highest levels of education on the planet but will remain poor. It may have all the natural resources nature has to offer, and people will still die from malnutrition as the country fails to exploit those resources. Let’s electrify Malawi, for in doing so we truly are unlocking the potential of the people!

Artificial Intelligence in Malawi

HOW ARTICIAL INTELIGENCE CAN HELP BUILD A SMARTER MALAWI

One of the oldest dreams and one that has long been cherished by science is that of creating intelligent machines. In the 1950s a mathematician Alan Mathison Turing asked a simple question akin to: “Can Machines Think?” And today, to some level, it appears they sure can!

Artificial intelligence includes a wide range of science tools concerned with building smart machines capable of performing tasks that typically require human intelligence. AI is an interdisciplinary science with multiple approaches, but key advancements have been enabled by machine learning and deep learning. These implementations of intelligence are mostly based on computer science concepts which in turn may be based or written in the language of mathematical modelling.
Artificial intelligence (AI) makes it possible for machines to learn from experience, adjust to new inputs and perform human-like tasks. Most AI examples that are talked about the most often in media–self-driving cars, protein folding, etc – rely heavily on deep learning. Using these technologies, computers can be trained to accomplish specific tasks by processing large amounts of data and recognizing patterns in the data.

Embedding intelligence into otherwise unintelligent matter naturally raises some tricky questions. Computers have already shown that they can perform computations at a far higher speed and efficiency than humans can. What would the future of more ubiquitous and sophisticated intelligence bring to mankind? This remains an open question. At KCHKNA we see AI as one of the most promising tools for the kind of societal growth that will simplify life of humanity; we need AI to help us solve some of the complex issues in our lives.

With the introduction of computers human life has changed tremendously. Many tasks have completely evolved from how they were conducted both in terms of the speed as well as the culture. We have managed to create computer programs that have allowed us to perform automated tasks which has enabled us to save one of our greatest resources (Time). Most African countries took some time to adopt as well to implement computer systems and this slowed their progress in development. With the coming of artificial intelligence most African countries can now take advantage of the technology to work hand in hand with software to devise better data-based strategies or implement those strategies. With artificial intelligence and artificial simulations, scenarios–economic, political, environmental– can be played out and their evolution tracked prior to actual implementation; this then minimizes risk. For Malawi, as it aims to develop at a far more rapid pace than ever before, adopting these kinds of technologies is not a matter of choice—it must be done.  Hospitals, schools, farms as well different industries can maximize productivity by incorporating artificial intelligence.  AI systems can scan great amounts of historical data in a few minutes and identify patterns that are impossible to be observed by humans. There is a limit to what human intelligence can do at any point in time. But the potential of artificial intelligence is limitless. Malawi as a country can benefit from these systems in both government as well as private sector. 

The beauty of AI is that most of the tools for developing AI systems are in fact open source. One needs no more than a computer and a human brain! The applications that can be developed are too numerous to mention but here are some examples:

  1. Local language Natural Language Processing (NLP) models: We know that one of the most natural modes of communicating is using voice. The arrival of computers and mobile devices in the last few decades has made communicating with hands (typing) seem normal. But with better NLP now the norm may well be communicating with our various devices using voice. But NLP models will not understand any language out of the box. They need to be trained on a lot of transcripts from the local languages. So NLP models for Malawi need to be developed.
  2. Autonomous Cars—Autonomous cars drive themselves. This is less of a big deal in the almost flawless streets of, say, Singapore, but take the car into the likes of Chatoloma or Wimbe and the car may immediately lose its intelligence! This is expected because intelligence depends on experience so in order for autonomous cars to drive on the streets and roads of Malawi we need the models to be trained on the streets of Malawi. Autonomous driving relies on cameras and computers, both of which are readily available to anyone who dares to look so Malawi can start developing Autonomous Cars, be they road-based or air vehicles!
  3. Fast Diagnosis of Common Diseases—Malaria is diagnosed by looking at the Red Blood Cells. Many errors are made in the process of diagnosis, and more importantly a lot of time is spent looking at the RBCs to see if the host of the cells is infected. This whole process can be put into a machine learning pipeline thus automating it. Many more illnesses can be diagnosed much faster with AI–but to ensure safe and accurate models they need to be trained on local data.
  4. Advanced Robotics—We emphasize that the beauty of AI is that all one needs is a computer and a brain—and the desire to do something creative! So training robots for a variety of tasks can be done at present. By incorporating robots across many industries the overall gains made by the country will be immense.

Watch out for our future posts where we share more in-depth about some of the many ways some of these applications and others can be implemented.

Individuality Matters at KCHKNA

The power of a company comes from the confluence of talents. A company does not excel because its founders are super intelligent, visionary, or hard working—all good qualities. Rather the organization thrives when the members of the company unleash their individual talents. It is therefore critical that individuals are offered an environment where their talents are naturally encouraged rather than snuffed out. At KCHKNA, we aim to provide such an environment.

This article was inspired by a book by Todd Rose titled The End of Average: How we succeed in a world that values sameness. You can check it out here

Todd Rose has shared a lot of ideas on why we miss out on the talent in many capable individuals because we use the same ability metrics for people with different individualities. In his book he argued that early practitioners like Fredrick Winslow Taylor came up with ideas that justified companies valuing systems rather than individuals. For Taylor, making the factory as efficient as possible meant providing standardized training, standardized work procedures, and standardized measures of performance and progress. In the process, the individual did not matter; what mattered was how well they followed the standards or fit the standards.

These ideas—collectively referred to as Taylorism—were applied across many factories but the impact is most palpable perhaps because Taylorism was applied to the factory that almost everyone goes to: the school. The products of this factory are you and me.
In America in the early 1900s about 6 percent of the population graduated from high school and 2 percent from college. So, the output of the school factory was evidently not impressive. Along came Edward Thorndike who embraced the Taylorist idea of standardization and rigorously applied it in the school system. Students got a standard education with little regard for their individual preferences or natural abilities—if you were of a certain age, you would learn these topics, in this order, for this long. The students’ level of intelligence was measured against some average, and their fate therefore depended heavily on how far away they were from the average. The standardization of education did lead to much better output—more people graduated from high school and college. These graduates had received a standard education, allowing them to do—on average—a good job at many factories. At these factories Taylor’s influence meant that the jobs were also standard, so there wasn’t too much trouble; the factories expected what they received.
Edward Thorndike’s ideas, or a variant of them, have been adopted by schools all over the globe. This is because it allows those responsible for education to measure their success using neat metrics—for example, number of people who graduate. But to graduate doesn’t mean to have learnt, and definitely doesn’t meant you have what it takes to excel at some job. But remember this was the age of average—and in many ways still is. What this means is that on average the average graduate will do an average job, earn an average salary, live an average life contributing an average bit to a society of average individuals.

But a time comes when we no longer want average individuals because the stakes are higher. You want people to be not just good at what they do but magnificent. You want an organization where the employees don’t wait for the bell to ring to move to the next task but are motivated enough to know when to move to the next task. And to do that, it appears, we would need to focus more on the individual, to take into account what their natural abilities are, and then offer them a customized path on which they can excel without the need to compare themselves against some arbitrary and dubious average success icon.

We believe that for the human race to progress we would need to tap far more into everyone’s potential by focusing on the individual. We feel that one of the key ways companies can thrive and offer employees work that is exciting and impactful, is through focusing on empowering their whole company. You may be a bit puzzled when we say ‘focusing on the company’. Let’s start with a question: what is a company?

A company can be thought of as a group of individuals working together to achieve one common goal. A company is made up of people and indeed, when everyone knocks off, the company goes home; what remains are the buildings, the chairs and such other props. If management teams care about the people working in the organization—rather than the immaterial, abstract organization itself—such a team would scale heights much faster. We are not saying it’s not good to make a profit but the point is we can make a profit if we care more about the people who are behind that profitability. In other words we focus on metrics that measure the quality of life of the individuals making up the company—and then we aggregate those measures to come up with a measure of how successful the whole company is. In this way you would not have a successful company whose employees are not successful, or a happy (based on some metric) company whose employees are anything but. When the company underperforms management does not just fire its employees; rather we would focus on understanding how we may be of help for them to reach their potential—because they are the company. The truth is that with the different backgrounds, understanding as well as perception that we each have, our performance across different tasks will differ. But we are all good in certain fields or contexts, and as management we would love to see our team members be in contexts where they can shine. After all, who wants to be known for mediocre work? Who doesn’t want to show the world their best self?

KCHKNA Inc. is one of the companies in Africa that gauges the potential of its team members not through their grades. We look across many metrics—it is definitely harder than just a quick peek at some grades—to understand in which context such and such could thrive. This in the long term allows us to keep members who love being at the company, and thus deliver high quality output shipped out with love and passion.

If you’re applying to join the team at KCHKNA, know that KCHKNA is more interested in your story and your worldview rather than your experience. The word experience is perhaps overrated and we believe people with drive and passion can get things done much better than those with experience. If you are not an average person; if you feel uncomfortable being like everyone else, but only just better; if your goal in life is not to walk the path already travelled: then show us your game, and let’s work together!