Join Our Team

Position: Administrative Officer

Location: Mzuzu

KCHKNA Inc. is a renewable energy and technology company that develops innovative solutions for creating smart, highly functional and tech-enabled human settlements. One of KCHKNA’s current initiatives is largescale energy recycling whereby a city’s waste pipeline is managed to extract value from it, such as generating electricity from the waste. Join us in creating clean, fun, and liveable places!

Position: Administrative Officer

Reports to: Chief Executive Officer

Your purpose at KCHKNA

To assist in the effective execution of the company’s projects.

Expected Contributions from You

a. Maintain company calendar schedule and appointment

b. Answer queries by employees and clients

c. Prepare regular reports on expenses and office budget

d. Distribute and store correspondence

e. Schedule in-house and external events

f. Analyse historical and current client data to recognise trends and patterns

g. Check that regulatory and ethical guidelines are followed when handling client data

h. Develop action plans for the company

i. Liaise with organisation’s vendors and partners

j. Organize meetings logistics including travel arrangements, visas, permits for company employees

k. Maintenance of Customer Relationship Management (CRM) platform.

Your Profile

a. Swift in getting things done.

b. Good grasp of how technology can be an enabler for people

c. Effective negotiation skills

d. Diploma in any commerce field or social science related field.

Apply Now

For more roles see here

Let’s Collect Your Waste!

We currently collect waste in Malawi in the following places.

MzuzuMzuzu CBD105200

So whether you have a factory, a medical institution, an office or a home, we are ready to provide you a consistent and reliable waste collection service that you subscribe to. We can also do one-off disposals. Please contact us via WhatsApp through +265881794148

KCHKNA DNA: Our Philosophy, Our Culture

Published in honor of World DNA day

What is a code?

To code means to represent information using symbols that we had agreed to earlier. For example, we could agree that when I raise my right hand it means “I am very, very happy” and if I clap twice it means “I am going to the market”. The two symbols are “raising my right hand” and “clapping twice”. Some of the reasons for using a code are: to simplify communication and to allow communication across large distances or across time. There are many codes in existence today. One famous one is the Morse Code which uses two symbols—represented visually by dashes and dots, or aurally by a long duration tone (equivalent to dash) and short duration tone (equivalent dot). An agreed-upon combination of these symbols is used to represent letters of the alphabet and the ten numerals of the (e.g. Arabic) numeral system (The numerals, 0,1,2, etc. are in fact also symbols that represent/encode the abstract mathematical objects called number—e.g. 1 represents the number 1.) These two Morse Code—dash and dot—symbols can then be used to encode any message we desire. To encode the word “KCHKNA” for example, we would use:

In Morse Codedash dot dashdash dot dash dotdot dot dot dotdash dot dashdash dotdot dash

Tip: On Android phones you can input characters using Morse Code. With the Google Virtual Keyboard, do so by going to “Languages”, choosing “English” and then scrolling to the right until you find the “Morse code” option

Human language is also a kind of code. We use an agreed-upon set of sounds to encode information. And while there are many human languages, there is ONE language that we all speak: the genetic code.

What is DNA?

Cells have to communicate with other cells and within themselves, too! For humans we use the code of language to, for example, issue an instruction such as “Stand up”. The listener understands because she knows the code. Likewise, the cell needs to talk using a language. The cell is continuously using a cryptic language to issue instructions about what proteins to produce in the body; these proteins can then be used for intracellular or intercellular communication, to build some structures in the body, or effect a change in a distant organ in the body.

 Proteins in the human body are made by chemically chaining together several amino acids (these are organic molecules). The human body uses about 22 amino acids to build its many proteins. 9 amino acids are called ‘essential’ because the body is not able to synthesize them by itself: so, it is essential that we ingest them. Often we do not directly consume amino acids; instead we consume proteins which the body then breaks down into its constituent amino acids.

Now, when all the amino acids are there, the cell needs to synthesize a specific protein. How does it tell the protein-making machinery (a key component being ribosome) to make a specific protein? The cell uses the genetic code to refer to specific amino acids.

Deoxyribonucleic acid (DNA) molecules are strung together in such a manner that they encode information. Just as we can code for a letter of the alphabet by arranging dashes and dots in one way (for Morse code), when DNA molecules are arranged in a specific way they can code for an amino acid. Instead of using just two symbols such as the dash and dot in Morse code, the genetic code consists of 4 symbols, referred to by their letters A, T, C, and G. Each amino acid is encoded by three of the four symbols. For example, the amino acid tryptophan is encoded by TGG.  There are other protein complexes in the cell that “understand” this language; they translate and execute the instruction. A region of DNA that codes for some protein or other functional unit (rather than just an amino acid) is generally called a gene, hence the term genetic code.

So while we may differ in the human languages we use, we all speak this one language called the genetic code!

Philosophy, culture and DNA

Any social grouping has what can be thought of as its DNA. This is the set of symbols used to communicate, the set of protocols and principles to be adhered to as well as the total sum of their knowledge, experiences, and wisdom. This is called the group’s philosophy. This philosophy then determines the group’s culture—that is what individual members or social functional units actually do (or not do).

Without prior agreements as to how to interpret symbols it is not possible to communicate and function as a unit. The cell issues instructions using the genetic code because of prior agreements as to how to interpret the symbols. Likewise, as a social unit (company) we must have a consensus as to what means what, what manner to behave, what rules of thumb to follow and more generally how to treat one another. Our emphasis on promoting a specific kind of culture does not imply this is the best culture or way of doing things. Not at all! (In fact, there is hardly any proof that one language is superior to another—it just happens that some languages manage to establish a stronger brand than others.) However, the important bit is to agree that this is how things would go. In other words, once we have agreed that our language  (and culture in general) consists of these symbols, those protocols and rules, everyone must acquiesce or else no (clear) communication or functional collaboration will happen.

What are some of our beliefs?

  1. You are not that important—at KCHKNA we believe in the power of not the individual but in how well they are connected to the rest of the team. We look at our organization as an organ or a system. Individual components make the system but the system itself is an emergent being that cannot be understood or fully appreciated by studying the individuals. What this means is that no matter how intelligent, how hardworking, how visionary one individual is is not the most important thing. Think perhaps of a heart cell. No one single heart cell has the ability to pump blood. And yet, together with all the others that make up the heart, these cells can now pump blood. We are organ, too. We function as a unit.
  2. You are that important—it is true that an individual heart cell cannot pump blood. However, it is equally true that without that individual heart cell, the heart is no longer the same. So an individual cell is indeed very important! Even more importantly, a collection of neuron cells will not pump blood. In other words while the connectedness is very  important, the type of individuals who are connected is of equal importance. Practically speaking this means that we do care about your individual quirks, dreams, and style. You are an invaluable part of this organ(isation)!
  3. Come for the people, work to pass time. Imagine you are with your best friend or another person whom you love spending time with. You can spend forever with this person just sitting side by side. But instead of just sitting around you decide to be doing something together—you decide to build a company, to advance your community, to bring love and positivity to the people who are around you. You do this not because you need to, but because you love being with the other person. This is not just metaphorical: it is what we strive to have our people experience. A large chunk of life is spent working so it doesn’t make sense that a large chunk of your life would be spent with people whom you don’t enjoy being with.
  4. Experiment. Experiment. Experiment. We are seekers of truth (the definition of which we agree on as a team) and in doing so we are willing to reexamine and adjust our worldview when presented with new data. We perform experiments as frequently as possible because we know there is more to discover, better things to come, better ways of doing things.

As a side note, communication devices that we use have one or many underlying protocols. When you buy a Wi-Fi capable device for example, this means that it has a microcontroller and other circuitry that implement the Wi-Fi protocol. The web clients we use to access the World Wide Web use the hypertext transfer protocol to talk to servers. When you have a USB device, it means that that device implements and thus understands the Universal Serial Bus protocol. The examples are too many to list! What is key to understand is that device manufacturers need to have first agreed on how to interpret the symbols in order for effective functioning of their devices to happen.

Philosophy and Technology

Human civilization has significantly advanced with innovations spanning a vast spectrum of industries. Researchers as well as entrepreneurs have created a world that was perhaps far from imaginable in the 20th century. From the way we live, travel and communicate to how we conduct business, what money is or means, a lot has changed—at least in some places! We should expect more changes because the world is still evolving and people all over the globe are still making innumerable discoveries. But underlying all this is a philosophy as to how humanity ought to evolve, what knowledge is worth seeking, what applications are worth developing, and so on.

A company’s philosophy is like its DNA. Alexander Leivesley pointed out in Huffington Post that, “Philosophy is not obsolete. Philosophy brings the important questions to the table and works towards an answer. It encourages us to think critically about the world.” The reason why a business exists is due to its DNA. This DNA is made up of the philosophy that underpins the actions of individuals. In other words, the culture is the outcome, a measurable property of a social grouping. The philosophy defines the culture and then the culture is manifested in the everyday actions and outcomes of the social group.

We strive to create a culture where people are genuinely and practically there for each other, but we cannot force people to behave in a specific way. We aim to create an environment where people can be caring, and yet give each individual the freedom for the specific actions they take to exhibit that care.

Our Goal at KCHKNA Inc.

 As KCHKNA, we are thus guided by a certain philosophy that is core to our existence. Unfortunately, as you may have noted from this note, a culture or philosophy is not something one can define in one line, or point at the same way we can point at our shiny office complex. We can share examples, but even they fall short. For example, we see the human as the greatest capital. Given the right tools and resources, she can achieve the extraordinary. We take inspiration from Jeff Bezos when he says, “Failure and invention are inseparable twins. To invent you have to experiment, and if you know in advance that it’s going to work, it’s not an experiment.” Thus we gloat neither over our failures nor our successes; but we dissect and learn from both experiences.  And while failure and invention are indeed inseparable twins, we never venture into something haphazardly in the hope of learning lessons from the failure; no, we do our utmost to plan and derisk our endeavors and maximize the probability for phenomenal success. And yet these examples never fully represent our philosophy, our DNA. Ultimately, you would have to come and join us to know and experience our core philosophy!

Happy World DNA day!

20+ GW for Malawi

Electricity is an indisputable enabler for any modern society. Hardly any other technology has had as much an influence as electricity. And yet, two-thirds of Africans still don’t have access to affordable, reliable, sustainable and modern electricity. This energy deficit continues to stifle economic growth, job creation, agricultural transformation as well as improvements in health and education. The deficit essentially stifles human potential, a sad reality for Africa But it is equally sad for the world as it means Africa is not able to contribute anywhere close to its potential.

The energy crisis has for a long, long time been a huge problem to Sub-Saharan Africa; this energy poverty presents a bottleneck for solving most of the other problems across the region. Despite long standing efforts to address the energy poverty, in 2014 633 million people lacked access to electricity and 792 million people relied on traditional biomass as their energy source for cooking (IEA, 2016). This lack of electricity has resulted in limited opportunities for entrepreneurs and corporations alike as well as premature deaths due to respiratory diseases caused by or exacerbated by cooking using outdated means.

Malawi being one of the countries in Sub-Saharan Africa is heavily hit by the deficit of electricity. With an estimated population of 18 million people as of 2020, less than 15 percent of the population have access to electricity. Those 15 percent often get electricity for less than half a day.  The Malawi power generation capacity is under 500 MW–too little to be of much use beyond lighting. No serious investor, local or foreign, would have the desire to invest in large scale projects with such a lack of energy.

But how much energy does Malawi need? Others have estimated that Malawi will need 2.5 billion dollars by 2030 in order to achieve an electrification rate of 30 percent. The goal is to have 1,200 MW by 2030.


We believe differently. Malawi needs more than 20,000 MW of power. The country has the capacity for more than 20,000 MW with the available resources. Producing 20,000 MW would require different means including wind, solar, hydro as well as biomass—but it can all be clean.

We believe so because we believe in the potential of the country and its people. Most other predictions for how much Malawi needs have an underlying assumption: that, for example in 2030, Malawi will still be one of the poorest nations on the planet. That is why well-meaning organizations create models that predict that Malawi needs such low levels of electricity as 1200, 2000 MW or something like it. But consider that Malawians are humans like those in Singapore or the USA. They too want air conditioning, 24/7 electricity, electric trains, advanced and futuristic airports, hospitals in which people don’t die due to power cuts, and data centers, to name a few. We know that this set of technologies can only be possible if there is over 20, 000 MW.

But why not do small projects, at least to help these poor people? For those outside Malawi a change from traditional fires for lighting to an electric bulb seems like a good thing. But for the average Malawian in a rural area, who initially did not have an electricity bill, the arrival of a little bit of electricity is in fact a new liability. They didn’t have to pay for lighting before, now they have to. But more electricity can allow that individual to open a welding business–or well, why not, an electric car plant. With this business that individual is able to pay for the electricity. Similarly at a national level small projects are a liability that will be hard to settle—it is too little to activate the economy and thus less an enabler and more a burden.

We reiterate that a little bit of electricity is a liability for the country. A lot of electricity is what will truly change things. We know, looking at other nations, that 18 million people need far, far more than a 1000 MW or, really anything below 20 thousand. Yes, Malawi is different–it is poor, we heard that. But what would need to change? Do we wait until there is a lot of demand from factories and then build the power plants for the factories? But who in the first place would build a factory if there is no reliable electricity! Indeed the idea has been one of building small projects and hoping the factories will follow; this has been experimented with for a long time already. There have been small projects all the way back to the establishment of the Republic in the 1960s. Small projects funded by benefactors over the last 50 plus years has resulted in less than 400 MW of capacity; that is HALF a century to reach a capacity that other nations build in weeks. So, no, small projects haven’t worked; they will not work in the next 50 years.

Yet, we do not instead wish for a haphazard building of power plants. The point is we need to build, a lot and bigger. A coordinated effort is required so that there isn’t an oversupply; but even if there were an oversupply of electricity in Malawi, it would simply be a new export to the neighbours. So what is needed now is large, financially sound projects. At KCHKNA we would like to be involved in this next chapter of the country!

Electricity is truly magical. It is one of mankind’s greatest inventions, by far. Even computers, themselves one other great invention, can only do what they do thanks to electricity. A society without electricity can have the highest levels of education on the planet but will remain poor. It may have all the natural resources nature has to offer, and people will still die from malnutrition as the country fails to exploit those resources. Let’s electrify Malawi, for in doing so we truly are unlocking the potential of the people!

Artificial Intelligence in Malawi


One of the oldest dreams and one that has long been cherished by science is that of creating intelligent machines. In the 1950s a mathematician Alan Mathison Turing asked a simple question akin to: “Can Machines Think?” And today, to some level, it appears they sure can!

Artificial intelligence includes a wide range of science tools concerned with building smart machines capable of performing tasks that typically require human intelligence. AI is an interdisciplinary science with multiple approaches, but key advancements have been enabled by machine learning and deep learning. These implementations of intelligence are mostly based on computer science concepts which in turn may be based or written in the language of mathematical modelling.
Artificial intelligence (AI) makes it possible for machines to learn from experience, adjust to new inputs and perform human-like tasks. Most AI examples that are talked about the most often in media–self-driving cars, protein folding, etc – rely heavily on deep learning. Using these technologies, computers can be trained to accomplish specific tasks by processing large amounts of data and recognizing patterns in the data.

Embedding intelligence into otherwise unintelligent matter naturally raises some tricky questions. Computers have already shown that they can perform computations at a far higher speed and efficiency than humans can. What would the future of more ubiquitous and sophisticated intelligence bring to mankind? This remains an open question. At KCHKNA we see AI as one of the most promising tools for the kind of societal growth that will simplify life of humanity; we need AI to help us solve some of the complex issues in our lives.

With the introduction of computers human life has changed tremendously. Many tasks have completely evolved from how they were conducted both in terms of the speed as well as the culture. We have managed to create computer programs that have allowed us to perform automated tasks which has enabled us to save one of our greatest resources (Time). Most African countries took some time to adopt as well to implement computer systems and this slowed their progress in development. With the coming of artificial intelligence most African countries can now take advantage of the technology to work hand in hand with software to devise better data-based strategies or implement those strategies. With artificial intelligence and artificial simulations, scenarios–economic, political, environmental– can be played out and their evolution tracked prior to actual implementation; this then minimizes risk. For Malawi, as it aims to develop at a far more rapid pace than ever before, adopting these kinds of technologies is not a matter of choice—it must be done.  Hospitals, schools, farms as well different industries can maximize productivity by incorporating artificial intelligence.  AI systems can scan great amounts of historical data in a few minutes and identify patterns that are impossible to be observed by humans. There is a limit to what human intelligence can do at any point in time. But the potential of artificial intelligence is limitless. Malawi as a country can benefit from these systems in both government as well as private sector. 

The beauty of AI is that most of the tools for developing AI systems are in fact open source. One needs no more than a computer and a human brain! The applications that can be developed are too numerous to mention but here are some examples:

  1. Local language Natural Language Processing (NLP) models: We know that one of the most natural modes of communicating is using voice. The arrival of computers and mobile devices in the last few decades has made communicating with hands (typing) seem normal. But with better NLP now the norm may well be communicating with our various devices using voice. But NLP models will not understand any language out of the box. They need to be trained on a lot of transcripts from the local languages. So NLP models for Malawi need to be developed.
  2. Autonomous Cars—Autonomous cars drive themselves. This is less of a big deal in the almost flawless streets of, say, Singapore, but take the car into the likes of Chatoloma or Wimbe and the car may immediately lose its intelligence! This is expected because intelligence depends on experience so in order for autonomous cars to drive on the streets and roads of Malawi we need the models to be trained on the streets of Malawi. Autonomous driving relies on cameras and computers, both of which are readily available to anyone who dares to look so Malawi can start developing Autonomous Cars, be they road-based or air vehicles!
  3. Fast Diagnosis of Common Diseases—Malaria is diagnosed by looking at the Red Blood Cells. Many errors are made in the process of diagnosis, and more importantly a lot of time is spent looking at the RBCs to see if the host of the cells is infected. This whole process can be put into a machine learning pipeline thus automating it. Many more illnesses can be diagnosed much faster with AI–but to ensure safe and accurate models they need to be trained on local data.
  4. Advanced Robotics—We emphasize that the beauty of AI is that all one needs is a computer and a brain—and the desire to do something creative! So training robots for a variety of tasks can be done at present. By incorporating robots across many industries the overall gains made by the country will be immense.

Watch out for our future posts where we share more in-depth about some of the many ways some of these applications and others can be implemented.

Individuality Matters at KCHKNA

The power of a company comes from the confluence of talents. A company does not excel because its founders are super intelligent, visionary, or hard working—all good qualities. Rather the organization thrives when the members of the company unleash their individual talents. It is therefore critical that individuals are offered an environment where their talents are naturally encouraged rather than snuffed out. At KCHKNA, we aim to provide such an environment.

This article was inspired by a book by Todd Rose titled The End of Average: How we succeed in a world that values sameness. You can check it out here

Todd Rose has shared a lot of ideas on why we miss out on the talent in many capable individuals because we use the same ability metrics for people with different individualities. In his book he argued that early practitioners like Fredrick Winslow Taylor came up with ideas that justified companies valuing systems rather than individuals. For Taylor, making the factory as efficient as possible meant providing standardized training, standardized work procedures, and standardized measures of performance and progress. In the process, the individual did not matter; what mattered was how well they followed the standards or fit the standards.

These ideas—collectively referred to as Taylorism—were applied across many factories but the impact is most palpable perhaps because Taylorism was applied to the factory that almost everyone goes to: the school. The products of this factory are you and me.
In America in the early 1900s about 6 percent of the population graduated from high school and 2 percent from college. So, the output of the school factory was evidently not impressive. Along came Edward Thorndike who embraced the Taylorist idea of standardization and rigorously applied it in the school system. Students got a standard education with little regard for their individual preferences or natural abilities—if you were of a certain age, you would learn these topics, in this order, for this long. The students’ level of intelligence was measured against some average, and their fate therefore depended heavily on how far away they were from the average. The standardization of education did lead to much better output—more people graduated from high school and college. These graduates had received a standard education, allowing them to do—on average—a good job at many factories. At these factories Taylor’s influence meant that the jobs were also standard, so there wasn’t too much trouble; the factories expected what they received.
Edward Thorndike’s ideas, or a variant of them, have been adopted by schools all over the globe. This is because it allows those responsible for education to measure their success using neat metrics—for example, number of people who graduate. But to graduate doesn’t mean to have learnt, and definitely doesn’t meant you have what it takes to excel at some job. But remember this was the age of average—and in many ways still is. What this means is that on average the average graduate will do an average job, earn an average salary, live an average life contributing an average bit to a society of average individuals.

But a time comes when we no longer want average individuals because the stakes are higher. You want people to be not just good at what they do but magnificent. You want an organization where the employees don’t wait for the bell to ring to move to the next task but are motivated enough to know when to move to the next task. And to do that, it appears, we would need to focus more on the individual, to take into account what their natural abilities are, and then offer them a customized path on which they can excel without the need to compare themselves against some arbitrary and dubious average success icon.

We believe that for the human race to progress we would need to tap far more into everyone’s potential by focusing on the individual. We feel that one of the key ways companies can thrive and offer employees work that is exciting and impactful, is through focusing on empowering their whole company. You may be a bit puzzled when we say ‘focusing on the company’. Let’s start with a question: what is a company?

A company can be thought of as a group of individuals working together to achieve one common goal. A company is made up of people and indeed, when everyone knocks off, the company goes home; what remains are the buildings, the chairs and such other props. If management teams care about the people working in the organization—rather than the immaterial, abstract organization itself—such a team would scale heights much faster. We are not saying it’s not good to make a profit but the point is we can make a profit if we care more about the people who are behind that profitability. In other words we focus on metrics that measure the quality of life of the individuals making up the company—and then we aggregate those measures to come up with a measure of how successful the whole company is. In this way you would not have a successful company whose employees are not successful, or a happy (based on some metric) company whose employees are anything but. When the company underperforms management does not just fire its employees; rather we would focus on understanding how we may be of help for them to reach their potential—because they are the company. The truth is that with the different backgrounds, understanding as well as perception that we each have, our performance across different tasks will differ. But we are all good in certain fields or contexts, and as management we would love to see our team members be in contexts where they can shine. After all, who wants to be known for mediocre work? Who doesn’t want to show the world their best self?

KCHKNA Inc. is one of the companies in Africa that gauges the potential of its team members not through their grades. We look across many metrics—it is definitely harder than just a quick peek at some grades—to understand in which context such and such could thrive. This in the long term allows us to keep members who love being at the company, and thus deliver high quality output shipped out with love and passion.

If you’re applying to join the team at KCHKNA, know that KCHKNA is more interested in your story and your worldview rather than your experience. The word experience is perhaps overrated and we believe people with drive and passion can get things done much better than those with experience. If you are not an average person; if you feel uncomfortable being like everyone else, but only just better; if your goal in life is not to walk the path already travelled: then show us your game, and let’s work together!     

Work at KCHKNA

As of 11 March 2021 — Still open!!

All intern positions come with a monthly lunch and travel allowance (within Mzuzu)

Some positions require relocation to Mzuzu

Throughout this notice number of years is a proxy for desired skill level and is thus useful only so far. Please focus on demonstrating your skills not just talking about your skills. For example, instead of “I am very good with Java” just show us the app you built with Java.

We look forward to you joining us!

KCHKNA Mechanical Engineer (Intern, 6+ months, 2 positions)

Job ID: KKFAM202026ME

You will be involved in the modelling and design of an energy from waste system. Your major goals include research, design, rendering and prototyping the power plant components.

Experience: 0 – 2 years

Skills:  CAD Software e.g. SolidWorks, FreeCAD and AutoCAD and other basic research tools

Your tasks include:

  • Design, prototype and build relevant equipment including steam turbines and shredders
  • Create and compile technical drawings using AutoCAD/SolidWorks/FreeCAD software
  • Identify appropriate materials to produce a bill of materials for the system designs
  • General technology and equipment analyses for a waste management system
  • Conduct engineering studies as needed, including written reports and recommendations


  • Degree in Mechanical Engineering, Industrial Engineering, Energy Engineering, or related field
  • Hands-on experience working with motors, machining and welding tools, etc, is a plus

Soft Requirements:

  • Technical Technophile
  • Swift at getting things done
  • Attention to quality


  • Lunch allowance provided for the duration of the internship, until, if so, conversion to full-time role

KCHKNA Game Developer (Intern, 6+ months, 2 positions)

Job ID: KKFAM202026GD

Ever thought of creating games that do more than just be games? Join us to create gamified services and applications that empower!

Experience: 0 – 2 years

Key Skills: Unity 3D, C#, 3D modelling software e.g. Blender

Your goal:

  • Create virtual environments in which KCHKNA products are embedded and tested

To achieve the goal:

  • Design, prototype, and implement code, logic and functionalities as per communicated design
  • Troubleshoot and optimize code for mobile platforms
  • Maintain or improve existing code to fulfill new requirements
  • Implement, test, debug, and ensure integrity of code, including code done by others
  • Communicate with designers to establish effective pipeline and integrate media assets
  • Tune and create light and render configuration presets
  • Choose or create materials via 3D design software
  • Participate in planning, and executing best practices or efficient workflows to ensure timely delivery
  • Share knowledge to other team members
  • Ensure all documentation is recorded

Technical Requirements

  • Technical technophile
  • Diploma/Degree in Computer Science, Computer graphics, Multimedia field or related field
  • Excellent knowledge of Unity, including experience with scripting, textures, animation, UI network and user session management
  • Experience with 3D software
  • Familiarity with unity material, lighting systems and render settings, capability to tune the lighting and render setting for good 3D view
  • Proficient in C# programming, knack for writing clean, readable, and easily maintainable code

Soft Requirements

  • Technical Technophile
  • Swift at getting things done
  • Attention to quality


  • Lunch allowance provided for the duration of the internship, until, if so, conversion to full-time role

KCHKNA Mobile App Developer

There are two options:

  1. Intern (3 positions), 6+ months
    Job ID: KKFAM202036MADi
  2. Part time (1 position), Competitive rates
    Job ID: KKFAM202036MAD

You’re welcome to apply if you understand such things an NFC, Bluetooth, QR Code from a technical standpoint, even if you don’t have the following specific skills.

Experience: 0 – 2 years

Key Skills: Java, Python, PhP, MySQL, Javascript, WordPress, GitHub,

Your goal:

  • Build lightweight, robust and secure applications

To achieve your goal:

  • Develop (as part of a team) and maintain Android applications (mobile and tablet) using Java
  • Facilitate the troubleshooting and resolving of pre- and post-production issues
  • Assist with various stages of the mobile application development lifecycle such as requirements gathering, user interface design and usability testing
  • Keep abreast of the latest in mobile technology and conduct research and prototyping using such technologies

Technical requirements:

  • Proven achievement of completed mobile application projects
  • Experience in working with small to medium development teams
  • Knowledge and/or experience in mobile backend development is a plus
  • Possess a degree/or somehow show knowledge in Information Technology, Computer Science, Computer Engineering or a related field

Soft requirements:

  • Technical Technophile
  • Swift at getting things done
  • Attention to quality


  • Lunch allowance provided for the duration of the internship, until, if so, conversion to full-time role
  • Competitive pay for the part time role

KCHKNA AI Engineer (Intern, 6+ months, 2 positions)

­­­­Job ID: KKFAM202026AI

If you have some experience developing artificial intelligence models, whether through courses or projects, we welcome you to join us.

Experience: 0 – 2 years

Key Tools/Skills: Python, Tensorflow+Keras, Pytorch, Docker

Your goals:

  • Build AI Minimum Viable Products that automate internal processes
  • Build enterprise-grade AI applications for external consumption

To achieve your goal:

  • Conduct technical research
  • Perform statistical comparisons across models
  • Visualize and explore data sets e.g. geospatial data about Malawi
  • Create synthetic data
  • Analyze and understand the client’s problem; design, implement and verify a solution addressing the problem
  • Design and build machine learning models for such things as risk control, demand prediction, equipment fault detection, adaptive electricity pricing, etc.

Technical requirements:

  • Knowledge of basic maths behind supervised learning and unsupervised learning
  • Knowledge of Tensorflow, Python, and relevant libraries
  • Experience with Natural Language Processing is a plus, but not required.

Soft requirements:

  • Technical Technophile
  • Swift at getting things done
  • Attention to quality


  • Lunch allowance provided for the duration of the internship, until, if so, conversion to full-time role

Why work with us?

At KCHKNA we believe that technology is an amplifier of human capacity. We build tools that are not just technologically impressive but that aim to empower our communities. Here are a few other benefits:

  1. You are going to make products that will be used right away. You will test your products in production. We believe this is invaluable experience
  2. You will be learning to use the most advanced software tools used by the world’s top companies and researchers
  3. Opportunity to be mentored by foreign experts from Singapore, India, China, US, Canada and more in areas such as mobile programming and artificial intelligence.
  4. Each month you will get to read and discuss a wide variety of books with other KCHKNA team members. It’s fun, and useful!

Apply at

Cryptocurrency: Seamless Value Exchange

Crypto, among other things, aims to allow fast, cheap and painless exchange of value–not necessarily money, but since money is a measure of value we could simply say “money”. Sending money around the world is currently still rather inefficient and expensive–try sending money to some otherwise unknown (and poor!) country like Malawi and you’ll actually have to budget for the transaction expenses! But what really gets sent when we say we are sending money? Surprisingly not money, but numbers! It is now so commonplace to receive money as mere numbers that we never quite question the fundamental meaning of this. In this article we talk about, rather summarily, what money is for and how new money can be of benefit.

A mythical story goes thus: Way, way back when people needed to exchange goods they could only do so by giving away goods they owned in exchange for goods they wanted to have. They would then need to find someone who needs what they wanted to let go of. Since they did not have flying machines and pretty paved roads back then, such exchanges may naturally have been between friends and relatives in close proximity. Later on it appears people realized that it is mighty hard to run into someone who needs what you have at the exact time that you need what they have!
While it turns out that this (barter) system is not exactly what preceded money, this story highlights an interesting aspect of goods exchange: there is value (and valueables) being exchanged. In such a system when you gave someone two bags of maize in exchange for their goat, you had an exchange using things that had intrinsic value—and that term—intrinsic—is an important one!

But, so the myth continues, a few smart folks figured that they could use tokenization! The idea was as follows. Suppose I want to have your 11 cows, and while I could give you my dogs in exchange, you obviously don’t want my dogs since…who would accept dogs in exchange for cows anyway. So instead we—started with me and you, but this we now includes our whole token-bound community—agree that you can give me  a token that I can use to get something of as much value as the cows that I want from you. Two things emerge: first, we need to determine and agree on the value of the cows; and, second, we need proof that indeed you can use this token in the said manner.

That token is money. Money is used to measure the value of things—and in unfortunate cases ‘things’ may include humans. I can give you this token called money which has no intrinsic value—unlike the cows, you cannot eat the money if you get hungry; similarly, money won’t go hunting with you like the dogs may. So, money has no value on its own. But, and a huge but this is, we as a community can give money value! We do this by simply agreeing that it has the value we desire.

You may then wonder what physical object is the most desirable token aka money? Initially it seemed necessary to have something that is scarce, perhaps hard to make or acquire. This use of some special objects was mostly done to fight counterfeit tokens. The tradition continues to this day whereby only certain organizations, such as central banks, are allowed to make legitimate money. You and I can still agree that some such piece of paper is worth some such value (e.g. company shares work somewhat like this), but this would not be called legitimate money, and we may struggle to find users beyond the two of us. What remains true is that the form of the token does not matter. The use of gold or silver or specially printed bank notes is not to say that these things are any more eligible to be money than a piece of paper off my notebook. Again, the major reason is to control the flow of these tokens, and avoid counterfeiting. An interesting extreme therefore has come about recently.

If money or the token of exchange can be of any form, does the token then need to be physical? Remember that the problem we were trying to solve by having only a few lucky people have the power to create money was to create some level of legitimacy or trust in the system. This idea of trust comes about especially in contexts where you’re dealing with strangers, who may or may not be in the mood of being honest. So, a stranger walks up to you to do business. She buys your land and pays with a token. She hands you the token that she pulled from her pocket and then on it writes: “Give Whoever Has This Token Anything Of Value Equivalent To Eleven Healthy Living Cows”. Perhaps to make it more legitimate she could sign off with her name: “#MoneyMaker”. There is a good chance you have been scammed. To prove this, go to the local merchant and try to get something with even one-tenth the value of 11 Healthy Living Cows.
Now instead of her own token, she can give you a government token. Yes, the government token may be prettier, but aside from that her self-created token and this are no different. And yet, with this government token you can go about trading with others. What the gov token has is public trust. The government token has been assigned value by the community—though it still lacks intrinsic value. People trust this token because they trust the system whose de facto head is the government. This has little to do with whether you like the government of the day or not: you have trust in a system where government plays an important role but the system is still a people-led one.

Cryptocurrencies aim to create the required public trust independent of the government or traditional central authority. Note that trust is only needed if there is room for someone to act dishonestly. If it is impossible, or mighty hard to be dishonest, then trust is not called for. Using advanced security features and making it very hard to forge transactions, cryptocurrencies conjure up community trust simply because no one (actually not 100% true…) can make counterfeit crypto.

It costs money to make money. It used to be necessary to print money and issue shiny coins with which we could also play Heads or Tails. These legitimate tokens were an advancement in exchange of value, but it is now a cost that is superfluous. Countries like Malawi that already have a tight budget would do well to move quickly toward these so called trustless systems—trustless to mean you don’t need to trust the bank or the individual you’re engaging with because the algorithms make sure nobody cheats.

Going hand in hand with cryptocurrencies is digital money. Digital money (not necessarily currency) has been around in some form already for a long time. While cryptocurrency is recent (started in earnest around 2009), digital money (money that is wholly electronic/or just numbers backed by no physical assets) can be said to have been around for as long as decades prior to 2009. For some time already money has not really been changing hands—rather it has been information changing in people’s accounts. The advantage of this is that information takes up less space and is not as costly to make as are physical tokens such as coins or notes. Digital money therefore is an attractive option even for places that do not yet want to implement cryptocurrency.

What are the downsides of cryptocurrencies and perhaps digital money in general? As with all things some people will stand to win more than others. In cryptocurrencies there are individuals or corporations with computing resources that allow then to earn significantly more money and influence through facilitating transactions—much the same way that banks milk you in exchange for the services they provide. There is also room for destabilizing another economy without ever setting foot there—simply via the internet. This is an example of cyberwarfare, and is not necessarily just due to the advent of cryptocurrencies. Additionally, philosophers and other social researchers fear that the future may belong to a new breed of feudal lords—those who understand and manage these technologies. The creators of these tech  systems are not necessarily political or religious leaders. They thus have little obligation to behave morally. The hope however is that should they create a flawed system—that is, one that benefits just them—the majority of people would abandon the system, rendering it truly “trustless” and thus without users.

Cryptocurrencies are a nice idea some of whose aims are to make transactions more efficient, to make fraud much harder, and to avoid central currency issuing or controlling authorities misusing their power in such a way that they disrupt the economy and innocent livelihoods. Perhaps a future is coming where money, of any form, may no longer be needed. At the moment however, Bitcoin and others are taking us away from physical money AND a central issuer of such physical tokens, to enable us to transact and interact more seamlessly trustlessly.

To read more about cryptocurrencies and digital currencies:

Project Ubin | Akoin | China’s digital currency

Investing in the Future

When in 1995 Nicholas Negroponte, founder of the MIT Media Lab, predicted that soon people would be buying books and newspapers straight over the Internet, Clifford Stoll wrote a critical article. Stoll—an accomplished astronomer with a PhD to his name!—discussed why the internet would fail stating in particular that ecommerce would not work. And oh boy work it did! But that is just one individual who, like many of us, probably does not wield the power to predict the future too well. Organizations can also go wrong: in 1876 Western Union believed that the telephone had too many shortcomings to be seriously considered as a means of communication and they saw no value in it. KODAK, one of the biggest companies in the world that contributed a lot in the area of photography, went bankrupt in 2012. Their collapse may be partly attributed to their failure to pivot toward the new technologies in photography. As the world was moving to digital photography KODAK was hesitant to change.  These are a few examples of companies and an individual who were unable to see the future value of a technology or innovation. But while some failed to see the immense value that certain technologies would create, others failed to properly estimate the price mankind would have to pay in exchange for enjoying certain technologies.

One of the reasons the human race has advanced so much is that some few individuals imagined a future far different from their present. These individuals then invested in their vision, be it in terms of time, finances, or career. These great innovators could not have possibly thought about every aspect of their technologies. Perhaps to the inventors of just-in-time manufacturing their desire was to make affordable goods and do so with supreme economic efficiency. But this same invention then played a central role in allowing companies to also overproduce, an outcome unintended.

So, as we invest in the future we think both about what good a technology can do as well as what could go wrong with it. This assessment is continuous. We then at times realize that some technologies are generating more harm than good. One such key technology is that of energy generation from fossil fuels. It is a great invention, and we must candidly applaud people who created the requisite extraction and refining technologies as well as the business schemes to make electricity available to paupers and the rich alike. However, as we learn more about how nature works we change our habits to incorporate our latest knowledge. At present it is generally believed that there are better ways of generating electricity that do much less environmental destabilization. The alternatives include renewable energy solutions—technologies that generate electricity from sources that can be replenished and often do much less harm to the biosphere. There is agreement that renewable energy sources are better than non-renewable sources. However, there isn’t always as much agreement as to which renewable energy source is best.  For example, generating energy from solar power is wonderful but perhaps only to an extent. The more people adopt solar power on a large scale, the more materials we would need to make the solar panels and the larger the land needed for these solar farms. These issues could lead to more waste being generated in disposing of solar cells, or potentially land not being available for other uses. Nevertheless, it is through these debates and discussions that as humanity we’re able to devise clever and better solutions. It is when we cease debating the merits and demerits of our technologies that we must worry all the more.

KCHKNA Inc. is based in Africa and is focusing on bringing clean energy to African countries, starting with Malawi. Africa is one of the best places to deploy large scale renewable energy solutions. While is Africa one of the best? First, across most of sub-Saharan Africa there is practically no electricity infrastructure to support a modern industrial economy. The demand is far higher than the supply. So, it is not a question of whether there is demand; rather it is question of whether we can devise a business model that works here. Second, again, across most of sub-Saharan Africa there is practically no electricity infrastructure. This is good because there is then no need to tear down an old functioning system in order to build a newer, more environmental-friendly one—because there isn’t such a system at the moment!

We believe that we need to push more heavily on renewable technologies. We believe that in the long run deploying renewables on a large scale—rather than LED lamps to some forlorn villagers—is more cost-effective especially since across most of Africa the necessary renewable sources such as water, a good amount of sunshine, and waste are readily available. Germany, Japan and other economies that have been traditionally powered by non-renewable sources have taken steps—through policies as well as developing different innovations–to pivot toward clean technologies. Africa on other hand is lucky in that it will not need to pivot; it can start with renewables. KCHKNA aims to spearhead the development of such enabling technologies so that Africa and the world may thrive.